
Обширный подход к

преподаванию

программной инженерии

Bertrand Meyer
ETH Zurich, ITMO & Eiffel Software

X Всероссийская конференция

“Преподавание информационных технологий в Российской Федерации”
Mockва, 17-ого Maя 2012

Chair of
Software Engineering

2

Content

1. Challenges of teaching programming & software
engineering

2. Our method at ETH: Outside-in, Touch of Class
textbook

3. Why use Eiffel?

4. Some other courses

5. Software Engineering Laboratory at ITMO

3

LASER summer school, 2012

4

- 1 -

Challenges of
teaching programming

& software
engineering

5

Teaching programming: concepts or skills?

6

Quiz

Your boss gives you the source code of a C compiler and
asks you to adapt it so that it will also find out if the
program being compiled will not run forever (i.e. it will
terminate its execution)

1.� Yes, I can, it’s straightforward

2.� It’s hard, but doable

3.� It is not feasible for C, but is feasible for Java

4.� It cannot be done for any realistic programming
language

7

Teaching programming: concepts or skills?

Skills supporting
concepts

8

Teaching programming: some critical concepts

Structure

Typing

Specification vs implementation,
information hiding, abstraction

Algorithmic reasoning

Change

Reuse

Complexity

Scaling up

Static vs dynamic

Classification

Notation

Invariant

Recursive reasoning

Syntax vs validity vs semantics

Function vs data

Complexity & impossibility

9

Introductory programming teaching

Teaching first-year programming is a politically sensitive
area, as you must contend not only with your students but
also with an intimidating second audience — colleagues who
teach in subsequent semesters….

Academics who teach introductory programming are placed
under enormous pressure by colleagues.

As surely as farmers complain about the weather,
computing academics will complain about students’
programming abilities.

Raymond Lister: After the Gold Rush: Toward
Sustainable Scholarship in Computing,
10th Conf. on Australasian computing education, 2008

10

Some challenges in teaching programming

� Ups and downs of high-tech economy, image of CS

� Offshoring and globalization raise the stakes

� Short-term pressures (e.g. families), IT industry fads

� Widely diverse student motivations, skills, experience

11

The Facebook generation: 1st-year CS students

Computer experience Programming experience

≥≥≥≥10 yrs: 54%

5-9 yrs: 42%

2-4 yrs: 4%

Full year-by-year figures:
Pedroni, Meyer, Oriol, They
know more than we think!,
CACM Blog, 2012

Averages over 6 years, 2003-2008
(yearly variations small)

12

Ways to teach introductory programming

� 1. “Programming in the small”

� 2. Learn APIs

� 3. Teach a programming language: Java, C++, C#

� 4. Functional programming

� 5. Completely formal, don’t touch a computer

Our approach: Outside-In (inverted curriculum)

13

Concepts or skills?

Skills supporting

concepts

14

- 2 -

Our method at ETH:
Outside-in,

Touch of Class
textbook

15

Teaching programming: some critical concepts

Structure

Typing

Specification vs implementation,
information hiding, abstraction

Algorithmic reasoning

Change

Reuse

Complexity

Scaling up

Static vs dynamic

Classification

Notation

Recursive reasoning

Syntax vs validity vs semantics

Function vs data

Complexity & impossibility

Invariant

16

Invariants: loops as problem-solving strategy

A loop invariant is a property that:

� Is easy to establish initially
(even to cover a trivial part of the data)

� Is easy to extend to cover a bigger part

� If covering all data, gives the desired result!

17

The idea of a loop

Previous state
of computation

Possible
solutionsExit condition

Initialization

Body

Body

INVARIANT

18

from

???

invariant

???

across structure as i loop

Result := max (Result, i.item)

end

Computing the maximum of a list

19

Loop as approximation strategy

s1 s 2 s i s n

Result = a 1

Result = Max (s 1 .. s 2)

Result = Max (s 1 .. s i)

Result = Max (s 1 .. sn)

= Max (s 1 .. s 1) i := i + 1

Result := max (Result , s i)

The loop
invariant

Loop body:

20

Reversing a list

from

pivot := first_element
first_element := Void

until pivot = Void loop

i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right

(i)
end

first_element pivot

right

i

1 2 3 4 5

21

Reversing a list

from

pivot := first_element
first_element := Void

until pivot = Void loop

i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right

(i)
end

first_element pivot

right

i

1 2 3 4 5

22

Reversing a list

from

pivot := first_element
first_element := Void

until pivot = Void loop

i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right

(i)
end

first_element pivot

right

i

1 2 3 4 5

23

Reversing a list

from

pivot := first_element
first_element := Void

until pivot = Void loop

i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right

(i)
end

first_element pivot

right

i

1 2 3 4 5

24

ii pivotpivot

Reversing a list

from

pivot := first_element
first_element := Void

until pivot = Void loop

i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right

(i)
end

first_element

right

1 2 3 4 5

25

Why does it work?

from

pivot := first_element
first_element := Void

until pivot = Void loop

i := first_element
first_element := pivot
pivot := pivot.right
first_element.put_right

(i)
end

first_element pivot

right

i

1 2 3 4 5

Invariant: from first_element
following right, initial items
in inverse order; from pivot,
rest of items in original order

26

Levenshtein distance

B

Operation

“Beethoven” to “Beatles”

Distance

E E

A

E T N

S

NH V EO

L

OB E T H V E

0 0 1

R

1 2

D

3

R

4

D

5

R

4

27

Levenshtein algorithm

across r : 1 |..| rows as i loop

across c : 1 |..| columns as j invariant

loop

if source [i] = target [j] then

D [i, j] := D [i -1, j -1]
else

D [i, j] := 1 +
min (D [i -1, j], D [i , j - 1], D [i - 1, j - 1])

end

end
end

Result := D [rows, columns]

???
-- For all p : 1 .. i, q : 1 .. j –1, we can turn source [1 .. p]
-- into target [1 .. q] in D [p, q] operations

B E A T L E S

B

E

E

T

H

30 1 2 5 6 74

0

1

2

3

5

4

30 1 2 5 6 74

1

2

3

5

4

0 2 3 4 5 6

1

1

1

0 1 2 3 4 5

2 1 2 3 3 4

3 2 2 1 2 3 4

4 3 3 2 2 3 44

D

29

Levenshtein algorithm

across r : 1 |..| rows as i loop

across c : 1 |..| columns as j invariant

loop

if source [i] = target [j] then

D [i, j] := D [i -1, j -1]
else

D [i, j] := 1 +
min (D [i -1, j], D [i , j - 1], D [i - 1, j - 1])

end

end
end

Result := D [rows, columns]

???
-- For all p : 1 .. i, q : 1 .. j –1, we can turn source [1 .. p]
-- into target [1 .. q] in D [p, q] operations

B E A T L E S

B

E

E

T

H

30 1 2 5 6 74

0

1

2

3

5

4

30 1 2 5 6 74

1

2

3

4

0 2 3 4 5 6

1

1

1

0 1 2 3 4 5

2 1 2 3 3 4

3 2 2 1 2I

I

Insert

D

D
Delete

R

Replace
R

Invariant: each D [i, j]
is distance from
source [1..i] to target [1..j]

31

Concepts or skills?

Skills supporting

concepts

32

Outside-in (Inverted Curriculum): intro course

Fully object-oriented from the start, using Eiffel

Design by Contract principles from the start

Component based: students use existing software

(TRAFFIC library):

�They start out as consumers

�They end up as producers!

“Progressive opening of the black boxes”

TRAFFIC is graphical, multimedia and extendible

Michela Pedroni, Nadia
Polikarpova & students

≈ 150,000 lines of Eiffel

33

(Approach 3: teaching a specific language)

First Java program:

You’ll understand
when you grow up!

Do as I say,
not as I do

class First {

public static void main(String args[])

{ System.out.println("Hello World!"); } }

34

Our first “program”

class PREVIEW inherit

TOURISM

feature

explore

-- Prepare & animate route

do
Paris.display
Louvre.spotlight
Metro.highlight
Route1.animate

end
end

Text to input

35

36

Supporting textbook

touch.ethz.ch

Springer, 2009

«ИНТУИТ»: БИНОМ.
Лаборатория знаний,
2011

37

Principles of the ETH course

� Reuse software : inspiration, imitation,
abstraction

� See lots of software

� Learn to reuse through interfaces and
contracts

� Interesting examples from day one

� Combination of principles and practices

Traditional topics too: algorithms, control structures,
basic data structures, recursion, syntax & BNF, …

Advanced topics: closures & lambda-calculus, some design
patterns, intro to software engineering…

touch.ethz.ch

38

- 3 -

Why use Eiffel?

39

Eiffel: the negatives

No major industry power behind Eiffel

� But: has made its mark anyway

Smaller community

� But: active, competent and enthusiastic

Not hyped, old technology that did not make it

� But: has proved to be more than a fad

Not enough reusable components

� But: easy to interface with e.g. C, C++

40

Negatives that are not

“All the best ideas will appear in my favorite
language anyway”

� Answer: have you tried to use Code Contracts?

“There are no Eiffel programmers to be found”
� Answer: Eiffel as a language has no tricks or

mysteries. Training someone in Eiffel means
teaching them sound O-O software engineering

� Lots of graduates with Eiffel experience (e.g.
ETH)

“What about this covariance thing?”
� Answer: the problem has been solved

“Not good for developing Web applications!”
� Partly true until recently, but no longer with

EWF

41

Eiffel: the reality

Method, language, environment

� Language: ISO standard since 2006

� Method: comprehensive set of software engineering
principles

• Extends across the entire lifecycle

• Directly supported by the language

� Environment: comprehensive set of tools, available
across numerous platforms

42

What is object-oriented programming?

Applying the concept of abstract data type (ADT)

Objects, not operations, are the structuring
criterion

Organize programs as combinations of object types

Every object type characterized by:

� Applicable operations (commands & queries)

� Properties of these operations

Organize these types into hierarchies (inheritance)

“Ask not what the system does, ask
what it does it to”

43

Eiffel: why?

Extendibility

Reliability (Design by Contract™, strong typing,
covariance, exception handling…)

Scalability and maintainability

Integrated Method + Language + Environment

Portability + Performance

44

Eiffel: the reality

Method, language, environment

� Language: ISO standard since 2006

� Method: comprehensive set of software engineering
principles

• Extends across the entire lifecycle

• Directly supported by the language

� Environment: comprehensive set of tools, available
across numerous platforms

45

Eiffel for teaching

Similar & different!

Simple, not pitfalls, easy syntax (e.g. semicolon is optional)

“One good way to do anything”

Very powerful constructs (agents, loops...)

Emphasis on interfaces and information hiding

e.g. no x.a := v

Students like it!

46

Some principles of the Eiffel method

� Abstraction (based on abstract data types)
� Information hiding
� Seamlessness
� Reversibility
� Design by Contract
� Open-Closed principle
� Single choice principle
� Single model principle
� Uniform access principle
� Command-query separation principle
� Option-operand separation principle
� Style matters

47

Design by Contract: applications

� Getting the software right

� Analysis

� Design

� Implementation

� Debugging

� Testing

� Exception handling

� Using inheritance properly

� Management

� Maintenance

� Documentation

48

Design by Contract: the basic idea

Every software element is intended to satisfy a certain
goal, for the benefit of other software elements (and
ultimately of human users)

This goal is the element’s contract

The contract of any software element should be

� Explicit

� Part of the software element itself

Contracts are expressed through

� Routine preconditions

� Routine postconditions

� Class invariants

� Loop invariants etc.

49

Eiffel: the language

�Classes

� Uniform type system, covering basic types

� Strongly typed, void-safe

� Genericity

� Agents: event-driven, functional etc. programming

� Inheritance, single and multiple

� Conversion

� Covariance

� Built-in Design by Contract mechanisms

� “Once” mechanisms, replacing statics and globals

50

Void safety

Null pointer dereferencing

x •f (...) with x void (null)

is not possible in Eiffel

Basics of the approach:

� Types “attached” by default

� If type detachable, it must be certain that any call
x •f (...) will always be applied to non-void x

51

- 4 -

Some other courses

52

Teaching software engineering

Basic courses:

� Software engineering (3rd year)

� Software architecture (2nd year)

Advanced courses:

� Distributed & outsourced software engineering (DOSE)

� Software verification

� (etc.)

53

Distributed software engineering

Today’s software development is multipolar

University seldom teach this part!

“Software Engineering for Outsourced and Offshore
Development” since 2003, with Peter Kolb

Since 2007: Distributed & Outsourced Software
Engineering (DOSE)

The project too is distributed. Currently: ETH, Politecnico di
Milano, U. of Nijny Novgorod, Odessa Polytechnic, U.
Debrecen, Hanoi University of Technology, Rio Cuarto
(Argentina)

54

The DOSE project

Setup: each group is a collection of teams from different
university; usually 2 teams, sometimes 3

Division by functionality, not lifecycle

Results:

� Hard for students

� Initial reactions often negative

� In the end it works out

� The main lesson: interfaces & abstraction

Open to more institutions (mid-Sept to mid-Dec):

http://se.ethz.ch/dose

55

- 5 -

The Software
Engineering

Laboratory at ITMO

56

SEL at ITMO

Software Engineering Laboratory |
Лаборатория Программной Инженерии

Создана в июне 2011

"Мегагрант" с финансовой поддержкой компании mail.ru

Oстаются открытые позиции!

� Аспиранты и Кандидаты (на полной ставке)

� Временные гранты (“sabbaticals”) для
исследователей, 2 до 6 месяцев

57

ITMO-SEL: mode of working

Reach for the highest international standards

Publish only in the best international venues

Collaborate closely with ETH team

Be open to the external world

� Microsoft Summer School on concurrency (Aug. 2012)

� European Software Engineering Conference (ESEC,
Aug. 2013)

� Weekly seminar http://sel.ifmo.ru/seminar

Try for the best!

58

The scientific goal

Produce an environment where verifying software is part
of the everyday, normal experience

“VAMOC”: Verification As A Matter of Course

59

EVE: Verification As a Matter Of Course

Arbiter

AutoProof

Alias
analysis

AutoFix

Test case
generation

EVE Test
execution

Test results

Inter.
prover

Sep. logic
prover

AutoTest

Invariant
inference

Suggestions

Suggestions

Fix generation

60

Topics and projects

Static verification:

� Proofs: Boogie etc.

� Alias calculus

� Calculus of Object Programs

Dynamic verification:

� Fully automatic testing (AutoTest)

� Fix suggestions (AutoFix)

Practical specification

� Full contracts (MML)

Concurrency

� SCOOP

61

General lessons learned

1. Reach for the highest intellectual goals

2. Tools, technology and especially languages matter

3. Teach skills supporting concepts

4. The goal of software engineering is quality

se.ethz.ch (ETH chair)

touch.ethz.ch (intro textbook)

se.ethz.ch/dose (distributed course)

www.bertrandmeyer.com (blog)

eiffel.com (languages & tools)

Chair of
Software Engineering

sel.ifmo.ru (ITMO lab)

62

Agents

How to program an event-driven (e.g. GUI) application in
Eiffel:

1.Define event type,
e.g. left_click

2. Subscriber:

map • left_click •subscribe (agent find_city)

3. Publisher:

left_click •publish ([x, y])

CLICK START STATION ABOVE

63

Multiple inheritance

Forget all you have heard!

Multiple inheritance is not the works of the
devil

Multiple inheritance is not bad for your teeth

(Even though Microsoft Word does not like it:

)

64

Multiple inheritance: Composite figures

A composite figure

Simple figures

65

A composite figure as a list

item

66

Defining the notion of composite figure

COMPOSITE_
FIGURE

center
display
hide
rotate
move
…

count
put
remove
…

FIGURE
LIST

[FIGURE]

67

Composite figures

class COMPOSITE_FIGURE inherit
FIGURE

LIST [FIGURE]
feature

display
-- Display each constituent figure in turn.

do
from start until after loop

item.display
forth

end
end
... Similarly for move, rotate etc. ...

end

Requires dynamic
binding

