s O6LWmMpHbIK Noaxoa, K h

NpenoaaBaHUIo
\nporpaN\N\Hofx'l MHXEeHepUun

J

Bertrand Meyer
ETH Zurich, ITMO & Eiffel Software

X Bcepoccurickas koHdhepeHums

"MNpenogaBaHne nHdoOpMaLUNOHHbIX TexHonoru B Poccuiickon ®epepaumn”
Mocksa, 17-oro Mas 2012

ETH “
Chair of

Software Engineering

“ Eiffel
S Software

Content

1.

Challenges of teaching programming & software
engineering

. Our method at ETH: Outside-in, Touch of Class

textbook
Why use Eiffel?
Some other courses

Software Engineering Laboratory at ITMO

LASER summer school, 2012 ©

Ivar Jacobson: UML
Martin Odersky: Scala)

Andrei Alexandrescu:
(C++ & D)
Eric Meijer: CH# & Ling
Simon Peyton-Jones:
Haskell

Guido van Rossum:

Python
Bertrand Meyer: Eiffel
Elba Island, Italy, 2-8 septembre 2012

http://laser.inf.ethz.ch

/

o

_1 -
Challenges of

& software
engineering

teaching programming

/

Teaching programming: concepts or skills? ©

Quiz

Your boss gives you the source code of a C compiler and
asks you to adapt it so that it will also find out if the
program being compiled will not run forever (i.e. it will
terminate its execution)

1.0 VYes, I can, it's straightforward
2.0 It's hard, but doable
3.0 It isnot feasible for C, but is feasible for Java

4.0 Tt cannot be done for any realistic programming
language

Teaching programming: concepts or skills? ©

" Skills supporting
concepts

Teaching programming: some critical concepts ©

[Specificm‘ion vs implementation, }

information hiding, abstraction [No’ra’rion }

:Change] [Syn‘rax vs validity vs seman‘rics]

i Structure

w

J {Recursive reasoning J

[Classifica’rion] [Complexi’ry&impossibili’ryJ

[Reuse]

Algorithmic reasoning]

[Func’rion vs data] [

[Scaling up] {Typing]

[Complexify] [S’ra’ric vs dynamic] {Invarian’r}

Introductory programming teaching ©

Teaching first-year programming is a politically sensitive
area, as you must contend not only with your students but
also with an intimidating second audience — colleagues who
teach in subsequent semesters....

Academics who teach introductory programming are placed
under enormous pressure by colleagues.

As surely as farmers complain about the weather,
computing academics will complain about students’
programming abilities.

Raymond Lister: After the Gold Rush: Toward
Sustainable Scholarship in Computing,
10th Conf. on Australasian computing education, 2008

Some challenges in teaching programming

> Ups and downs of high-tech economy, image of CS
» Offshoring and globalization raise the stakes
> Short-term pressures (e.g. families), IT industry fads

> Widely diverse student motivations, skills, experience

10

The Facebook generation: 1st-year CS students ©

Computer experience Programming experience
2-4 yrs: 4% > 100

5-9 yrs: 42%

>10 yrs: 54%

Full year-by-year figures:
Pedroni, Meyer, Oriol, They
Averages over 6 years, 2003-2008 know more than we think!

(vearly variations small) CACM Blog, 2012 !

Ways to teach introductory programming ©

(> 1. "Programming in the small"J

:> 2. Learn APIs]

[> 3. Teach a programming language: Java, C++, C#]

[> 4. Functional pr'ogr'amming]

[> 5. Completely formal, don't touch a computer]

Our approach: Outside-In (inverted curriculum)
12

Concepts or skills?

~

Skills supporting
concepts

\

/

©

-

\

Our method at ETH:

2.)

Outside-in,
Touch of Class

textbook /

Teaching programming: some critical concepts ©

[Specifica’rion vs implementation, }

information hiding, abstraction [No’ra’rion }

:Change] [Syn‘rax vs validity vs seman‘rics]

i Structure

w

J {Recursive reasoning J

[Classifica’rion] [Complexi’ry&impossibili’ryJ

[Reuse]

Algorithmic reasoning]

[Func’rion vs data] [

[Scaling up] {Typing]

[Complexify] [S’ra’ric vs dynamic] {Invarian’r}

15

Invariants: loops as problem-solving strategy ©

A loop invariant is a property that:

-(Ts easy to establish initially ’

(even to cover a trivial part of the data)
. Y

>[Is easy to extend to cover a bigger part]

>[If covering all data, gives the desired result!]

16

The idea of a loop ©

Possible
solutions

| Exit condition |
(

| INVARIANT |

Previous state
of computation

® —~

\[Imhallzatlon
[
"

17

Computing the maximum of a list

 from

22?

invariant
?27?

across structureas / loop

@d

\

Result .= max (Result, /. /tem)

J/

18

Loop as approximation strategy ©

Loop body:

Result = a; = Max (51.0 579)
Result = Max (51 .. 55)

[i=7 +1

Result := max (Result , 5 ;)

[Result = Max (§'1.. ;)]

Invariant

19

Reversing a list ©

from

[pivot .= first_element
(first_element .=Void]

until p/vot =Void loop

[/:= first_element

(first_element := pivot
[pivot:= pivot.right |
([first_element.put_right]

fﬂ [first_elemen 7‘]

20

Reversing a list

*
L

*
*
<

1

C__J€

WAVA

f/’ {f/rsf e/emem‘ p/vof

from

pivot = first_element
first_element :=Void

Llﬂ'l'l' pivot =Void loop
/.= first_element
first_element .= pivot

pivot := pivot.right
first_element.put_ /"/_q/n‘

end o

Reversing a list ©

—%x—> o
C_J€ | | ¢

right
. 7, D ——
first_elemen 7‘] [pivot from

pivot = first_element
first_element :=Void

until p/vot =Void loop

- /:= first_element
first_element .= pivot
pivot .= pivot.right |
first_element.put_right

end -

Reversing a list ©

1 2 3 A 5
o L 4
‘.0L | (((+§ .‘
right
—

from

pivot = first_element
first_element :=Void

until p/vot =Void loop

- /:= first_element
first_element .= pivot
pivot .= pivot.right |
first_element.put_right

[first_elemen 7‘] [pivot

end -

Reversing a list ©

] first_element Lp/'vo 7‘] from

pivot = first_element
first_element :=Void

until p/vot =Void loop

[/= first_element
first_element .= pivot
pivot .= pivot.right |
first_element.put_right

end ot

Why does it work? “
4 N ™

L / [f/'/‘sf_ e/emem‘] [p/'vof from

pivot .= first_element
first_element :=Void
until p/vot =Void loo
Envar‘ign‘r: from first .e/emem‘\ L Rz e/e;eﬂ,
following right, initial items ' =

in inverse order: from pivof, f/:/"SLe/e/ﬁeﬂf:f pivot
(esf of items in origina or'der'/ (pivot = pivot.right

first_element.put_right

end s

Levenshtein distance

"Beethoven" to "Beatles”

B | H OV
v v
A L
Operation — — R — D R D

Distance 0 0 1 1 2 3 4

(]

26

Levenshtein algorithm 0

across r:1|..| rows as / loop
across c¢:1|..| columns as j invariant

--Forall p:1./,¢g:1. j-1,we can turn source[l .. p]
--into farget[1..g]lin D [p, ¢] operations

loop o ,
if source[/] = target[j]then !
DLijli= DL i-1, j-1] A
else
D[/, fj]:=1+
min(O[/-1,41,01[/,j-11, D[/-1, j-1])
end p 5
end
end >

Result := D [rows, columns]

o 1| | %
|

Il ..

g <T i &
\

< ™ ¢ o

'R
D
@

—o——o-
1

Levenshtein algorithm 0

across r:1|..| rows as / loop
across c¢:1|..| columns as j invariant

--Forall p:1./,¢g:1. j-1,we can turn source[l .. p]
--into farget[1..g]lin D [p, ¢] operations

loop o ,
if source[/] = target[j]then !
DLijli= DL i-1, j-1] A
else
D[/, fj]:=1+
min(O[/-1,41,01[/,j-11, D[/-1, j-1])
end p 5
end
end >

Result := D [rows, columns]

29

o

A

Tnvariant: each Ol/ j]

is distance from

0 I\source [1../] to target [1../],
1 o) 1 2 3| 4 5
2 1 1 2 3 3 4
)
R
3 2 2 *—Te@
Insert Delete Replace

Concepts or skills?

~

Skills supporting
concepts

\

/

Outside-in (Inverted Curriculum): intro course ©

Fully object-oriented from the start, using Eiffel
Design by Contract principles from the start

Component based: students use existing software

(TRAFFIC library): Michela Pedroni, Nadia
> They start out as consumers Polikarpova & students
»They end up as producers! \z 150,000 lines of Eiffel/

"Progressive opening of the black boxes"

TRAFFIC is graphical, multimedia and extendible

32

(Approach 3: teaching a specific language)

First Java program:

class First {
public static void main(String args[])
{ System.out.printin("Hello World!"); } }

|

o
You'll understand %as IISgY,
when you grow up! hot as 1 do

33

-10] xf

Our first “program”

~lass PREVIEW inherit e T al
TOURISM i AV AN

feature o e o L P ‘ l
explore I AN / |

-- Prepare & animate route

do
Paris.display
Louvre.spotlight
Metro.highlight
ond Routel.animate Text fo input]

34

ey d
Lo City Tine Table

71:59

Bahnhof Enge

B y T i
s ':J.1'-..I'_; I:-;-'"...-_...-- wfp -) : = Lahnhof Wie
fei - T O R i - - O 6:17:00.0 AM
' . I 6:43:00.0 AM
7:09.00.0 AM
7-35-00.0 AM
B:01.00,0 AM
B:27:00.0 AM
B:53:00.0 AM
To Bahnhot Wollishofen
600000 AM
6:35:00.0 AM
7:01:00.0 AM
7:27:00.0 AM
7:53:00.0 AM
8-19-00.0 AM
B:45:00.0 AM

[T Show VBZ Lines

Load buildings |
Dealete buildings |
Zoam in | Zoom nut

[« Show sun
[+ Show buildings
[Simulate time

Ji

Supporting textbook

touch.ethz.ch

Rl Bertrand Meyer

TOUCH OF CLASS

Learning to Program Well
with Objects and Contracts

2| Springer

Springer, 2009

«UHTYUT»: BUHOM.

NNaGopaTopua 3HaHum,
2011

NMOYYBCTBYU KJIACC

Y4yuUMCH NporpaMmMUpoBEaTh XOPOLLIO
c obwexkTammn W KOHTpaKTaMu

36

Principles of the ETH course ©

> Reuse software : inspiration, imitation,
abstraction

> See lots of software

> Learn to reuse through interfaces and
confracts

> Interesting examples from day one
> Combination of principles and practices

touch.ethz.ch

Traditional topics too: algorithms, control structures,
basic data structures, recursion, syntax & BNF, ...

Advanced topics: closures & lambda-calculus, some design
patterns, intro to software engineering...

37

\

_3-
Why use Eiffel?

/

Eiffel: the negatives

No major industry power behind Eiffel
> But: has made its mark anyway

Smaller community
> But: active, competent and enthusiastic

Not hyped, old technology that did not make it
> But: has proved to be more than a fad

Not enough reusable components
> But: easy to interface with e.g. C, C++

39

Negatives that are not ©

“All the best ideas will appear in my favorite
language anyway

> Answer: have you fried to use Code Contracts?
" There are no Eiffel programmers to be found'

> Answer: Eiffel as a language has no tricks or
mysteries. Training someone in Eiffel means
teaching them sound O-O software engineering

> Lots of graduates with Eiffel experience (e.g.
ETH)

“What about this covariance thing?"
> Answer: the problem has been solved
“"Not good for developing Web applications!

> Partly true until recently, but no longer with
EWF 40

Eiffel: the reality

Method, language, environment
> Language: ISO standard since 2006

> Method: comprehensive set of software engineering
principles
« Extends across the entire lifecycle
* Directly supported by the language

> Environment: comprehensive set of tools, available
across humerous platforms

41

What is object-oriented programming?

Applying the concept of abstract data type (ADT)

Objects, not operations, are the structuring
criterion

Organize programs as combinations of object types
Every object type characterized by:
> Applicable operations (commands & queries)
> Properties of these operations
Organize these types into hierarchies (inheritance)

"Ask not what the system does, ask
what it does it to”

42

Eiffel: why?

Extendibility

Reliability (Design by Contract™, strong typing,
covariance, exception handling...)

Scalability and maintainability
Integrated Method + Language + Environment

Portability + Performance

43

Eiffel: the reality

Method, language, environment
> Language: ISO standard since 2006

> Method: comprehensive set of software engineering
principles
« Extends across the entire lifecycle
* Directly supported by the language

> Environment: comprehensive set of tools, available
across humerous platforms

44

Eiffel for teaching

Similar & different!

Simple, not pitfalls, easy syntax (e.g. semicolon is optional)
“One good way to do anything"

Very powerful constructs (agents, loops...)

Emphasis on interfaces and information hiding

eg.no X.A .=V

Students like it

45

Some principles of the Eiffel method

» Abstraction (based on abstract data types)
» Information hiding

> Seamlessness

> Reversibility

> Design by Contract

» Open-Closed principle

» Single choice principle

» Single model principle

» Uniform access principle

» Command-query separation principle
» Option-operand separation principle
> Style matters

46

Design by Contract: applications

Getting the software right
Analysis

Design

Implementation
Debugging

Testing

Exception handling

Using inheritance properly
Management

Maintenance
Documentation

vV V. V VYV V VYV ¥V V VYV V V

47

Design by Contract: the basic idea ©

Every software element is intfended to satisfy a certain
goal, for the benefit of other software elements (and
ultimately of human users)

This goal is the element’s contract

The contract of any software element should be

> Explicit

> Part of the software element itself
Contracts are expressed through

> Routine preconditions

> Routine postconditions

> Class invariants

> Loop invariants etc.

48

Eiffel: the language

»>Classes

» Uniform type system, covering basic types

» Strongly typed, void-safe

> Genericity

> Agents: event-driven, functional etc. programming
» Inheritance, single and multiple

» Conversion

» Covariance

» Built-in Design by Contract mechanisms

» "Once" mechanisms, replacing statics and globals

49

Void safety

Null pointer dereferencing
x.f (...) with x void (null)

is not possible in Eiffel

Basics of the approach:
> Types "attached" by default

> If type detachable, it must be certain that any call
x.f (...) will always be applied to non-void x

50

©

/

\

_4

Some other courses

\

/

Teaching software engineering

Basic courses:
> Software engineering (3¢ year)
> Software architecture (2nd year)

Advanced courses:

> Distributed & outsourced software engineering (DOSE)
> Software verification

» (etc.)

52

Distributed software engineering ©

Today's software development is multipolar
University seldom teach this part!

“Software Engineering for Outsourced and Offshore
Development" since 2003, with Peter Kolb

Since 2007: Distributed & Outsourced Software
Engineering (DOSE)

The project too is distributed. Currently: ETH, Politecnico di
Milano, U. of Nijny Novgorod, Odessa Polytechnic, U.
Debrecen, Hanoi University of Technology, Rio Cuarto
(Argentina)

53

The DOSE project ©

Setup: each group is a collection of teams from different
university; usually 2 teams, sometimes 3

Division by functionality, not lifecycle
Results:
» Hard for students
> Initial reactions often negative
» In the end it works out
» The main lesson: interfaces & abstraction

Open to more institutions (mid-Sept to mid-Dec):

http://se.ethz.ch/dose

54

©

/

\

_H -

The Software
Engineering

Laboratory at ITMO

\

J

SEL at ITMO ©

Software Engineering Laboratory |
NNabopaTtopusa NporpammHon VIHxeHepumn

CosnaHa B noHe 2011

"MerarpaHT" ¢ dmHaHcoBoW nogaepxkon komnanum mail .ru

OcTatotcst OTKpbITble no3unuuu!
» AcnupaHTbl 1 Kangmaatbl (Ha NONHOM cTaBke)

» BpemeHHble rpaHThl (“sabbaticals”) ans
nccneposartenen, 2 0o 6 mecsaueB

56

ITMO-SEL: mode of working

Reach for the highest international standards
Publish only in the best international venues
Collaborate closely with ETH team

Be open to the external world
> Microsoft Summer School on concurrency (Aug. 2012)

> European Software Engineering Conference (ESEC,
Aug. 2013)

> Weekly seminar h’r’rp://sel.ifmo.ru/seminar

Try for the best!

57

The scientific goal

Produce an environment where verifying software is part
of the everyday, normal experience

"VAMOC": Verification As A Matter of Course

58

EVE: Verification As a Matter Of Course

Test results

prover
Alias
analysis
e
[Sugg STIOHS
prover \\
Invariant . : :
Arbiter](Fix generation @

[EVE AufoTest > execution

Test case
generation

59

Topics and projects

Static verification:
> Proofs: Boogie etc.
> Alias calculus
> Calculus of Object Programs

Dynamic verification:
> Fully automatic testing (AutoTest)
> Fix suggestions (AutoFix)
Practical specification
» Full contracts (MML)
Concurrency
> SCOOP

60

General lessons learned

1. Reach for the highest intellectual goals

2. Tools, technology and especially languages matter
3. Teach skills supporting concepts

4. The goal of software engineering is quality

| selifmo.ru (ITMO lab)

| se.ethz.ch (ETH chair)
[touch.ethz.ch (intro textbook) |

| se.ethz.ch/dose (distributed course) |
___www.bertrandmeyer.com (blog) |

[eiffel.com (languages & tools) |

g M?'

Eiﬁ&l ~__ ETH
!‘. Software gy £ Chair of “

Software Engineering

Agents

How to program an event-driven (e g. GUI) application in

Eiffel:

1.Define event type,

e.g. left_click

2. Subscriber:

x

J_HT L

CLICK START STATION ABOVE

= |

meww

map.left_click. subscr'/be (agent find cu’ry)

3. Publisher:

left_click. publish ([x, y])

62

Multiple inheritance ©

Forget all you have heard!

Multiple inheritance is not the works of the
devil

Multiple inheritance is not bad for your teeth
(Even +hnatinh AMirraeaf+ \AMarAd Aace nat likko i+

kailings Review View Developer Acrobat

sl =i .|| EE =S| (A
$ a9 == FEEUT] AaBbl AaBbC AaBbCc AaBbC 4aBbCe
- A= = =8|l= |I,Qv i =| | THeadingl THeading2 THeading3 THeading4 T Heading5
Fi Paragraph) L=

Object-oriented programming would become a mockery of itself jLd
had to renounce multiple inheritance. .

Ignare Once

Grammar...

About This Sentence

Look Up...

i< ow

Paste 63

N\

/

Simple figures

/

A composite figure

/

64

A composite figure as a list

O

N

65

center P p—
display g

hide FIGURE [FIGURE] count
rotfafe put
move remove

COMPOSITE
FIGURE

66

Composite figures

class COMPOSITE FIGURE inherit
FIGURE

LIST[FIGURE]
feature
display
-- Display each constituent figure in turn.

do
from startuntil afterloop
[/tem. a}
end forth Requires dynamic
end binding

.. Similarly for move, rotate etc. ...
end

67

